mirror of
https://git.adityakumar.xyz/dsa.git
synced 2024-11-22 01:52:53 +00:00
add queue
This commit is contained in:
parent
fadae3f503
commit
1bb2a09fb3
1 changed files with 358 additions and 0 deletions
358
content/docs/dsa/queue.md
Normal file
358
content/docs/dsa/queue.md
Normal file
|
@ -0,0 +1,358 @@
|
|||
---
|
||||
title: "Queue"
|
||||
weight: 2
|
||||
# bookFlatSection: false
|
||||
# bookToc: true
|
||||
# bookHidden: false
|
||||
# bookCollapseSection: false
|
||||
# bookComments: false
|
||||
# bookSearchExclude: false
|
||||
---
|
||||
|
||||
# Queue
|
||||
|
||||
A queue in data structures and algorithms is a linear collection of elements that follows the
|
||||
First-In-First-Out (FIFO) principle. This means that the first element added to the queue will be
|
||||
the first one to be removed. Queues are used when there's a need to process elements sequentially,
|
||||
maintaining the order in which they were received or inserted.
|
||||
|
||||
<!--more-->
|
||||
|
||||
Queues have various applications and can be implemented using different data structures such as
|
||||
arrays, linked lists (singly or doubly), or even specialized queues like circular queues that help
|
||||
optimize space efficiency by reusing unused memory slots.
|
||||
|
||||
Key operations associated with queues include:
|
||||
|
||||
- **Enqueue**: Add an element to the rear end of the queue.
|
||||
- **Dequeue**: Remove and return the front element from the queue.
|
||||
- **Peek or Front**: Return the value at the front without removing it, useful for checking what's
|
||||
next in line.
|
||||
- **isEmpty**: Check if the queue is empty.
|
||||
- **IsFull (for some implementations like fixed-size queues)**: Determine whether the queue has
|
||||
reached its maximum capacity.
|
||||
|
||||
Queues are crucial in various algorithms and systems, such as scheduling tasks in operating systems,
|
||||
handling events or requests in event-driven programming, managing task processing in concurrent
|
||||
systems (like thread execution order), and serving a fundamental role in network buffering and data
|
||||
streaming applications.
|
||||
|
||||
## Algorithm
|
||||
|
||||
Queues can be implemented using an array or a linked list. The use cases, pros and cons are the same as explained in [stack](../stack#algorithm). A typical queue implementation using array and linked list are outlined below:
|
||||
|
||||
1. **Enqueue (Adding an Element)**: When you want to add an element to the queue, we follow these
|
||||
steps:
|
||||
|
||||
- Check if there is space in the queue (i.e., it isn't full). In a fixed-size queue, this
|
||||
involves checking if there are any unused slots left after adding the new item.
|
||||
- Add the new element at the rear of the queue. If you're using an array implementation and reach
|
||||
its end, you would typically wrap around to start positioning the next element (like in a circular
|
||||
queue). This step involves updating pointers or indexes that mark where elements begin and end
|
||||
within the data structure.
|
||||
|
||||
2. **Dequeue (Removing an Element)**: To remove an element from the queue while maintaining the FIFO
|
||||
order, do this:
|
||||
|
||||
- Check if there's any element to dequeue—if the queue is empty, you cannot proceed with removal.
|
||||
- Remove and return the front element of the queue. This involves taking the first element out of
|
||||
the collection that has been maintained by your enqueue operations.
|
||||
- If using an array implementation, after removing an item from the start, we typically move all
|
||||
subsequent elements one position forward to fill in the gap left by the removed element (like
|
||||
shifting items downwards).
|
||||
|
||||
3. **Peek or Front**: This operation doesn't modify the queue but allows you to look at what the
|
||||
next item to be dequeued would be without actually removing it. Essentially, you access the element
|
||||
at the front of your queue. In an array-based implementation, this is just a read operation on the
|
||||
first index or position in the queue where elements are stored.
|
||||
|
||||
4. **IsEmpty**: This check simply tells you whether there's anything to enqueue or dequeue—it
|
||||
returns true if no element is present and false otherwise. For an array-based queue, this can be as
|
||||
simple as checking if your front index points at a valid element (i.e., not zero in the case of a
|
||||
non-zero indexed array).
|
||||
|
||||
5. **IsFull**: Only for fixed-size queues. It checks whether all slots are occupied and no room is
|
||||
left to add new elements. This would involve comparing an internal size counter or index against the
|
||||
defined capacity of your queue.
|
||||
|
||||
When implementing a queue algorithm, it's also essential to handle edge cases appropriately, like
|
||||
dealing with operations on an empty queue, ensuring efficiency in terms of time complexity for each
|
||||
operation (especially important for large queues), and maintaining data integrity throughout the
|
||||
process.
|
||||
|
||||
In this case, we will only look at enqueue and dequeue operations. Implementing `peek`, `IsEmpty` and `IsFull` is trivial as it simply involves looking at the pointer and deciding the course of action.
|
||||
|
||||
### Pseudocode
|
||||
|
||||
```
|
||||
Add(item)
|
||||
// Insert item in the circular queue stored in q[0 : n - 1].
|
||||
// rear points to the alst item, and front is one
|
||||
// position counterclockwise from the first item in q
|
||||
{
|
||||
rear := (rear + 1) mod n; // Advance rear clockwise
|
||||
if (front == rear) then
|
||||
{
|
||||
write("Queue is full");
|
||||
if (front == 0) then rear := n - 1;
|
||||
else rear := rear -1;
|
||||
// Move rear one position counterclockwise
|
||||
return false;
|
||||
}
|
||||
else
|
||||
{
|
||||
q[rear] := item; // Insert new item
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
Remove(item)
|
||||
// Removes and returns the front element of the queue q[0 : n - 1]
|
||||
{
|
||||
if (front == rear) then
|
||||
{
|
||||
write("Queue is empty");
|
||||
return false;
|
||||
}
|
||||
else
|
||||
{
|
||||
front := (front + 1) mod n; // Advance front clockwise
|
||||
item := q[front]; // Set item to front of queue
|
||||
return true;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Code
|
||||
|
||||
```cpp
|
||||
import <optional>;
|
||||
import <print>;
|
||||
|
||||
struct Node {
|
||||
ssize_t data{};
|
||||
Node *link{};
|
||||
};
|
||||
|
||||
Node *rear{}, *front{};
|
||||
|
||||
auto add(const ssize_t &item) -> void {
|
||||
auto temp{new Node};
|
||||
temp->data = item;
|
||||
rear ? rear->link = temp : nullptr;
|
||||
rear = temp;
|
||||
if (front == nullptr)
|
||||
front = temp;
|
||||
}
|
||||
|
||||
auto remove() -> std::optional<decltype(front->data)> {
|
||||
if (front == nullptr)
|
||||
return std::nullopt;
|
||||
auto temp{front};
|
||||
std::optional<decltype(front->data)> temp_data{front->data};
|
||||
front = front->link;
|
||||
delete temp;
|
||||
return temp_data;
|
||||
}
|
||||
|
||||
auto remove_and_print_result() -> void {
|
||||
if (auto result{remove()}; result.has_value()) {
|
||||
std::println("{}", result.value());
|
||||
} else {
|
||||
std::println("empty");
|
||||
}
|
||||
}
|
||||
|
||||
int main() {
|
||||
add(34);
|
||||
add(87);
|
||||
add(54);
|
||||
|
||||
remove_and_print_result();
|
||||
remove_and_print_result();
|
||||
remove_and_print_result();
|
||||
remove_and_print_result();
|
||||
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
|
||||
This is a very basic implementation and design specifics will require you to implement it in a slightly different way but the crux remains the same.
|
||||
|
||||
### Explanation
|
||||
|
||||
1. **Structure and Global Variables**
|
||||
|
||||
```cpp
|
||||
struct Node {
|
||||
ssize_t data{};
|
||||
Node *link{};
|
||||
};
|
||||
|
||||
Node *rear{}, *front{};
|
||||
```
|
||||
|
||||
- `struct Node` defines a node in the linked list, containing:
|
||||
- `ssize_t data{}`: the data stored in the node, initialized to zero.
|
||||
- `Node *link{}`: a pointer to the next node in the list, initialized to `nullptr`.
|
||||
- `Node *rear{}, *front{}`; are global pointers to the rear (end) and front (beginning) of the queue, both initialized to `nullptr`.
|
||||
|
||||
2. **`add()` Function**
|
||||
|
||||
```cpp
|
||||
auto add(const ssize_t &item) -> void {
|
||||
auto temp{new Node};
|
||||
temp->data = item;
|
||||
rear ? rear->link = temp : nullptr;
|
||||
rear = temp;
|
||||
if (front == nullptr)
|
||||
front = temp;
|
||||
}
|
||||
```
|
||||
|
||||
- `add(const ssize_t &item)`: Adds a new item to the queue.
|
||||
- Creates a new Node and assigns it to `temp`.
|
||||
- Sets `temp->data` to the item being added.
|
||||
- If `rear` is not `nullptr`, sets `rear->link` to `temp`.
|
||||
- Updates `rear` to `temp`.
|
||||
- If `front` is `nullptr` (queue was empty), sets `front` to `temp`.
|
||||
|
||||
3. **`remove()` Function**
|
||||
|
||||
```cpp
|
||||
auto remove() -> std::optional<decltype(front->data)> {
|
||||
if (front == nullptr)
|
||||
return std::nullopt;
|
||||
auto temp{front};
|
||||
std::optional<decltype(front->data)> temp_data{front->data};
|
||||
front = front->link;
|
||||
delete temp;
|
||||
return temp_data;
|
||||
}
|
||||
```
|
||||
|
||||
- `remove()`: Removes an item from the front of the queue and returns it.
|
||||
- If `front` is `nullptr`, returns `std::nullopt` (indicating the queue is empty).
|
||||
- Saves the current front node in `temp`.
|
||||
- Stores the data of the front node in a `std::optional` called `temp_data`.
|
||||
- Updates `front` to the next node (`front->link`).
|
||||
- Deletes the old front node (`temp`).
|
||||
- Returns `temp_data`.
|
||||
|
||||
4. **`remove_and_print_result()` Function**
|
||||
|
||||
```cpp
|
||||
auto remove_and_print_result() -> void {
|
||||
if (auto result{remove()}; result.has_value()) {
|
||||
std::println("{}", result.value());
|
||||
} else {
|
||||
std::println("empty");
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
- `remove_and_print_result()`: Removes an item from the queue and prints the result.
|
||||
- Calls `remove()` and stores the result in `result`.
|
||||
- If `result` has a value, prints the value.
|
||||
- Otherwise, prints "empty".
|
||||
|
||||
5. **`main()` Function**
|
||||
|
||||
```cpp
|
||||
int main() {
|
||||
add(34);
|
||||
add(87);
|
||||
add(54);
|
||||
|
||||
remove_and_print_result();
|
||||
remove_and_print_result();
|
||||
remove_and_print_result();
|
||||
remove_and_print_result();
|
||||
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
|
||||
- `main()`: The main entry point of the program.
|
||||
- Adds three items (34, 87, 54) to the queue using `add()`.
|
||||
- Calls `remove_and_print_result()` four times, attempting to remove and print items from the queue. Since there are only three items, the fourth call will print "empty".
|
||||
|
||||
## Code (using smart pointers)
|
||||
|
||||
Usage of raw pointers should be avoided whenever possible for safety reasons. Here is a possible implementation using smart pointers.
|
||||
|
||||
```cpp
|
||||
import <memory>;
|
||||
import <optional>;
|
||||
import <print>;
|
||||
|
||||
struct Node;
|
||||
|
||||
using node_ptr_t = std::shared_ptr<Node>;
|
||||
|
||||
struct Node {
|
||||
ssize_t data{};
|
||||
std::shared_ptr<Node> link{};
|
||||
|
||||
Node() = default;
|
||||
Node(Node &&) = default;
|
||||
explicit Node(ssize_t data, node_ptr_t link)
|
||||
: data(std::move(data)), link(link) {}
|
||||
Node &operator=(Node &&) = default;
|
||||
Node(const Node &) = delete;
|
||||
Node &operator=(const Node &) = delete;
|
||||
};
|
||||
|
||||
node_ptr_t rear{}, front{};
|
||||
|
||||
auto add(const ssize_t &item) -> void {
|
||||
auto temp{std::make_shared<Node>()};
|
||||
temp->data = item;
|
||||
rear ? rear->link = temp : nullptr;
|
||||
rear = temp;
|
||||
if (front == nullptr)
|
||||
front = temp;
|
||||
}
|
||||
|
||||
auto remove() -> std::optional<decltype(front->data)> {
|
||||
if (front == nullptr)
|
||||
return std::nullopt;
|
||||
auto temp{front};
|
||||
std::optional<decltype(front->data)> temp_data{front->data};
|
||||
front = front->link;
|
||||
return temp_data;
|
||||
}
|
||||
|
||||
auto remove_and_print_result() -> void {
|
||||
if (auto result{remove()}; result.has_value()) {
|
||||
std::println("{}", result.value());
|
||||
} else {
|
||||
std::println("empty");
|
||||
}
|
||||
}
|
||||
|
||||
int main() {
|
||||
add(34);
|
||||
add(87);
|
||||
add(54);
|
||||
|
||||
remove_and_print_result();
|
||||
remove_and_print_result();
|
||||
remove_and_print_result();
|
||||
remove_and_print_result();
|
||||
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
|
||||
Same as usual, except no `new` and `delete` operators.
|
||||
|
||||
## Output
|
||||
|
||||
```console
|
||||
❯ ./main
|
||||
34
|
||||
87
|
||||
54
|
||||
empty
|
||||
```
|
Loading…
Reference in a new issue