mirror of
https://git.adityakumar.xyz/llama.cpp.git
synced 2024-11-09 15:29:43 +00:00
llama : add custom RoPE (#2054)
* Implement customizable RoPE The original RoPE has pre-defined parameters theta_i = 10000^(−2(i−1)/d), for i in [1, 2, ..., d/2] Our customizable RoPE, ggml_rope_custom_inplace, uses theta_i = scale * base^(−2(i−1)/d), for i in [1, 2, ..., d/2] with the default matches the original scale = 1.0 base = 10000 The new command line arguments --rope-freq-base --rope-freq-scale set the two new RoPE parameter. Recent researches show changing these two parameters extends the context limit with minimal loss. 1. Extending Context to 8K kaiokendev https://kaiokendev.github.io/til#extending-context-to-8k 2. Extending Context Window of Large Language Models via Positional Interpolation Shouyuan Chen, Sherman Wong, Liangjian Chen, Yuandong Tian https://arxiv.org/abs/2306.15595 3. NTK-Aware Scaled RoPE allows LLaMA models to have extended (8k+) context size without any fine-tuning and minimal perplexity degradation. https://www.reddit.com/user/bloc97 https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ For the bold, try adding the following command line parameters to your favorite model: -c 16384 --rope-freq-base 80000 --rope-freq-scale 0.5 * ggml-metal: fix custom rope * common: fix argument names in help * llama: increase MEM_REQ_EVAL for MODEL_3B It avoids crashing for quantized weights on CPU. Better ways to calculate the required buffer size would be better. * llama: make MEM_REQ_EVAL depend on n_ctx * server: use proper Content-Type in curl examples Without the header Content-Type: application/json, curl will POST with Content-Type: application/x-www-form-urlencoded Though our simple server doesn't care, the httplib.h used has a limit with CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 8192 With Content-Type: application/json, we can send large json data. * style : minor fixes, mostly indentations * ggml : fix asserts --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
a6803cab94
commit
6e7cca4047
12 changed files with 185 additions and 67 deletions
|
@ -168,6 +168,18 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||
break;
|
||||
}
|
||||
params.n_ctx = std::stoi(argv[i]);
|
||||
} else if (arg == "--rope-freq-base") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.rope_freq_base = std::stof(argv[i]);
|
||||
} else if (arg == "--rope-freq-scale") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.rope_freq_scale = std::stof(argv[i]);
|
||||
} else if (arg == "--memory-f32") {
|
||||
params.memory_f16 = false;
|
||||
} else if (arg == "--top-p") {
|
||||
|
@ -493,6 +505,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||
fprintf(stderr, " --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale);
|
||||
fprintf(stderr, " --cfg-smooth-factor N smooth factor between old and new logits (default: %f, 1.0 = no smoothing)\n", params.cfg_smooth_factor);
|
||||
fprintf(stderr, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
||||
fprintf(stderr, " --rope-freq-base N RoPE base frequency (default: %.1f)\n", params.rope_freq_base);
|
||||
fprintf(stderr, " --rope-freq-scale N RoPE frequency scaling factor (default: %g)\n", params.rope_freq_scale);
|
||||
fprintf(stderr, " --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
|
||||
fprintf(stderr, " --no-penalize-nl do not penalize newline token\n");
|
||||
fprintf(stderr, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
||||
|
@ -573,6 +587,8 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
|||
lparams.use_mlock = params.use_mlock;
|
||||
lparams.logits_all = params.perplexity;
|
||||
lparams.embedding = params.embedding;
|
||||
lparams.rope_freq_base = params.rope_freq_base;
|
||||
lparams.rope_freq_scale = params.rope_freq_scale;
|
||||
|
||||
return lparams;
|
||||
}
|
||||
|
|
|
@ -32,6 +32,8 @@ struct gpt_params {
|
|||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
float rope_freq_base = 10000.0f; // RoPE base frequency
|
||||
float rope_freq_scale = 1.0f; // RoPE frequency scaling factor
|
||||
|
||||
// sampling parameters
|
||||
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
|
||||
|
|
|
@ -84,9 +84,17 @@ int main(int argc, char ** argv) {
|
|||
return 0;
|
||||
}
|
||||
|
||||
if (params.rope_freq_base != 10000.0) {
|
||||
fprintf(stderr, "%s: warning: changing RoPE frequency base to %g (default 10000.0)\n", __func__, params.rope_freq_base);
|
||||
}
|
||||
|
||||
if (params.rope_freq_scale != 1.0) {
|
||||
fprintf(stderr, "%s: warning: scaling RoPE frequency by %g (default 1.0)\n", __func__, params.rope_freq_scale);
|
||||
}
|
||||
|
||||
if (params.n_ctx > 2048) {
|
||||
fprintf(stderr, "%s: warning: model might not support context sizes greater than 2048 tokens (%d specified);"
|
||||
"expect poor results\n", __func__, params.n_ctx);
|
||||
fprintf(stderr, "%s: warning: base model only supports context sizes no greater than 2048 tokens (%d specified);"
|
||||
" you are on your own\n", __func__, params.n_ctx);
|
||||
} else if (params.n_ctx < 8) {
|
||||
fprintf(stderr, "%s: warning: minimum context size is 8, using minimum size.\n", __func__);
|
||||
params.n_ctx = 8;
|
||||
|
|
|
@ -66,6 +66,7 @@ Using [curl](https://curl.se/). On Windows `curl.exe` should be available in the
|
|||
```sh
|
||||
curl --request POST \
|
||||
--url http://localhost:8080/completion \
|
||||
--header "Content-Type: application/json" \
|
||||
--data '{"prompt": "Building a website can be done in 10 simple steps:","n_predict": 128}'
|
||||
```
|
||||
|
||||
|
|
|
@ -32,6 +32,7 @@ tokenize() {
|
|||
--silent \
|
||||
--request POST \
|
||||
--url "${API_URL}/tokenize" \
|
||||
--header "Content-Type: application/json" \
|
||||
--data-raw "$(jq -ns --arg content "$1" '{content:$content}')" \
|
||||
| jq '.tokens[]'
|
||||
}
|
||||
|
@ -64,6 +65,7 @@ chat_completion() {
|
|||
--no-buffer \
|
||||
--request POST \
|
||||
--url "${API_URL}/completion" \
|
||||
--header "Content-Type: application/json" \
|
||||
--data-raw "${DATA}")
|
||||
|
||||
printf "\n"
|
||||
|
|
|
@ -608,6 +608,8 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
|||
fprintf(stderr, " -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
|
||||
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
fprintf(stderr, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
||||
fprintf(stderr, " --rope-freq-base N RoPE base frequency (default: %.1f)\n", params.rope_freq_base);
|
||||
fprintf(stderr, " --rope-freq-scale N RoPE frequency scaling factor (default: %g)\n", params.rope_freq_scale);
|
||||
fprintf(stderr, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
fprintf(stderr, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
||||
fprintf(stderr, " not recommended: doubles context memory required and no measurable increase in quality\n");
|
||||
|
@ -722,6 +724,22 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||
}
|
||||
params.n_ctx = std::stoi(argv[i]);
|
||||
}
|
||||
else if (arg == "--rope-freq-base")
|
||||
{
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.rope_freq_base = std::stof(argv[i]);
|
||||
}
|
||||
else if (arg == "--rope-freq-scale")
|
||||
{
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.rope_freq_scale = std::stof(argv[i]);
|
||||
}
|
||||
else if (arg == "--memory-f32" || arg == "--memory_f32")
|
||||
{
|
||||
params.memory_f16 = false;
|
||||
|
|
45
ggml-metal.m
45
ggml-metal.m
|
@ -881,28 +881,35 @@ void ggml_metal_graph_compute(
|
|||
|
||||
const int n_past = ((int32_t *)(src1->data))[0];
|
||||
|
||||
float freq_base;
|
||||
float freq_scale;
|
||||
memcpy(&freq_base, (int32_t *) src1->data + 4, sizeof(float));
|
||||
memcpy(&freq_scale, (int32_t *) src1->data + 5, sizeof(float));
|
||||
|
||||
[encoder setComputePipelineState:ctx->pipeline_rope];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
||||
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
|
||||
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
|
||||
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
|
||||
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
|
||||
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
|
||||
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
|
||||
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
|
||||
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
|
||||
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
|
||||
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
|
||||
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
|
||||
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
|
||||
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
|
||||
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
|
||||
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
|
||||
[encoder setBytes:&n_past length:sizeof( int) atIndex:18];
|
||||
[encoder setBytes:&n_dims length:sizeof( int) atIndex:19];
|
||||
[encoder setBytes:&mode length:sizeof( int) atIndex:20];
|
||||
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
||||
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
|
||||
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
|
||||
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
|
||||
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
|
||||
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
|
||||
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
|
||||
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
|
||||
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
|
||||
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
|
||||
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
|
||||
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
|
||||
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
|
||||
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
|
||||
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
|
||||
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
|
||||
[encoder setBytes:&n_past length:sizeof( int) atIndex:18];
|
||||
[encoder setBytes:&n_dims length:sizeof( int) atIndex:19];
|
||||
[encoder setBytes:&mode length:sizeof( int) atIndex:20];
|
||||
[encoder setBytes:&freq_base length:sizeof(float) atIndex:21];
|
||||
[encoder setBytes:&freq_scale length:sizeof(float) atIndex:22];
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
|
|
|
@ -656,17 +656,19 @@ kernel void kernel_rope(
|
|||
constant int & n_past,
|
||||
constant int & n_dims,
|
||||
constant int & mode,
|
||||
constant float & freq_base,
|
||||
constant float & freq_scale,
|
||||
uint3 tpig[[thread_position_in_grid]]) {
|
||||
const int64_t i3 = tpig[2];
|
||||
const int64_t i2 = tpig[1];
|
||||
const int64_t i1 = tpig[0];
|
||||
|
||||
const bool is_neox = mode & 2;
|
||||
const float theta_scale = pow(10000.0, -2.0f/n_dims);
|
||||
const float theta_scale = pow(freq_base, -2.0f/n_dims);
|
||||
|
||||
const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
|
||||
|
||||
float theta = (float)p;
|
||||
float theta = freq_scale * (float)p;
|
||||
|
||||
if (!is_neox) {
|
||||
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
|
||||
|
|
50
ggml.c
50
ggml.c
|
@ -6956,6 +6956,8 @@ struct ggml_tensor * ggml_rope_impl(
|
|||
int n_past,
|
||||
int n_dims,
|
||||
int mode,
|
||||
float freq_base,
|
||||
float freq_scale,
|
||||
int n_ctx,
|
||||
bool inplace) {
|
||||
GGML_ASSERT(n_past >= 0);
|
||||
|
@ -6969,12 +6971,14 @@ struct ggml_tensor * ggml_rope_impl(
|
|||
|
||||
ggml_scratch_save(ctx);
|
||||
|
||||
struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
|
||||
struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 6);
|
||||
|
||||
((int32_t *) b->data)[0] = n_past;
|
||||
((int32_t *) b->data)[1] = n_dims;
|
||||
((int32_t *) b->data)[2] = mode;
|
||||
((int32_t *) b->data)[3] = n_ctx;
|
||||
memcpy((int32_t *) b->data + 4, &freq_base, sizeof(float));
|
||||
memcpy((int32_t *) b->data + 5, &freq_scale, sizeof(float));
|
||||
|
||||
ggml_scratch_load(ctx);
|
||||
|
||||
|
@ -6993,7 +6997,7 @@ struct ggml_tensor * ggml_rope(
|
|||
int n_dims,
|
||||
int mode,
|
||||
int n_ctx) {
|
||||
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, false);
|
||||
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, 10000.0f, 1.0f, n_ctx, false);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_rope_inplace(
|
||||
|
@ -7003,7 +7007,19 @@ struct ggml_tensor * ggml_rope_inplace(
|
|||
int n_dims,
|
||||
int mode,
|
||||
int n_ctx) {
|
||||
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, true);
|
||||
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, 10000.0f, 1.0f, n_ctx, true);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_rope_custom_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int n_past,
|
||||
int n_dims,
|
||||
int mode,
|
||||
float freq_base,
|
||||
float freq_scale,
|
||||
int n_ctx) {
|
||||
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, freq_base, freq_scale, n_ctx, true);
|
||||
}
|
||||
|
||||
// ggml_rope_back
|
||||
|
@ -12074,16 +12090,21 @@ static void ggml_compute_forward_rope_f32(
|
|||
const struct ggml_tensor * src1,
|
||||
struct ggml_tensor * dst) {
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(ggml_nelements(src1) == 4);
|
||||
GGML_ASSERT(ggml_nelements(src1) == 6);
|
||||
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
return;
|
||||
}
|
||||
|
||||
float freq_base;
|
||||
float freq_scale;
|
||||
|
||||
const int n_past = ((int32_t *) src1->data)[0];
|
||||
const int n_dims = ((int32_t *) src1->data)[1];
|
||||
const int mode = ((int32_t *) src1->data)[2];
|
||||
const int n_ctx = ((int32_t *) src1->data)[3];
|
||||
memcpy(&freq_base, (int32_t *) src1->data + 4, sizeof(float));
|
||||
memcpy(&freq_scale, (int32_t *) src1->data + 5, sizeof(float));
|
||||
|
||||
assert(n_past >= 0);
|
||||
|
||||
|
@ -12112,7 +12133,7 @@ static void ggml_compute_forward_rope_f32(
|
|||
// row index used to determine which thread to use
|
||||
int ir = 0;
|
||||
|
||||
const float theta_scale = powf(10000.0, -2.0f/n_dims);
|
||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||
|
||||
const bool is_neox = mode & 2;
|
||||
const bool is_glm = mode & 4;
|
||||
|
@ -12124,7 +12145,7 @@ static void ggml_compute_forward_rope_f32(
|
|||
if (ir++ < ir0) continue;
|
||||
if (ir > ir1) break;
|
||||
|
||||
float theta = (float)p;
|
||||
float theta = freq_scale * (float)p;
|
||||
|
||||
if (is_glm) {
|
||||
theta = MIN(p, n_ctx - 2);
|
||||
|
@ -12201,16 +12222,21 @@ static void ggml_compute_forward_rope_f16(
|
|||
const struct ggml_tensor * src1,
|
||||
struct ggml_tensor * dst) {
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(ggml_nelements(src1) == 4);
|
||||
GGML_ASSERT(ggml_nelements(src1) == 6);
|
||||
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
return;
|
||||
}
|
||||
|
||||
float freq_base;
|
||||
float freq_scale;
|
||||
|
||||
const int n_past = ((int32_t *) src1->data)[0];
|
||||
const int n_dims = ((int32_t *) src1->data)[1];
|
||||
const int mode = ((int32_t *) src1->data)[2];
|
||||
const int n_ctx = ((int32_t *) src1->data)[3];
|
||||
memcpy(&freq_base, (int32_t *) src1->data + 4, sizeof(float));
|
||||
memcpy(&freq_scale, (int32_t *) src1->data + 5, sizeof(float));
|
||||
|
||||
assert(n_past >= 0);
|
||||
|
||||
|
@ -12239,7 +12265,7 @@ static void ggml_compute_forward_rope_f16(
|
|||
// row index used to determine which thread to use
|
||||
int ir = 0;
|
||||
|
||||
const float theta_scale = powf(10000.0, -2.0f/n_dims);
|
||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||
|
||||
const bool is_neox = mode & 2;
|
||||
const bool is_glm = mode & 4;
|
||||
|
@ -12251,7 +12277,7 @@ static void ggml_compute_forward_rope_f16(
|
|||
if (ir++ < ir0) continue;
|
||||
if (ir > ir1) break;
|
||||
|
||||
float theta = (float)p;
|
||||
float theta = freq_scale * (float)p;
|
||||
|
||||
if (is_glm) {
|
||||
theta = MIN(p, n_ctx - 2);
|
||||
|
@ -12312,7 +12338,7 @@ static void ggml_compute_forward_rope_f16(
|
|||
const float x0 = GGML_FP16_TO_FP32(src[0]);
|
||||
const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
|
||||
|
||||
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
||||
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
|
||||
dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
|
||||
}
|
||||
}
|
||||
|
@ -15710,7 +15736,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
|||
// necessary for llama
|
||||
if (src0->grad) {
|
||||
assert(src1->type == GGML_TYPE_I32);
|
||||
assert(ggml_nelements(src1) == 4);
|
||||
assert(ggml_nelements(src1) == 6);
|
||||
const int n_past = ((int32_t *) src1->data)[0];
|
||||
const int n_dims = ((int32_t *) src1->data)[1];
|
||||
const int mode = ((int32_t *) src1->data)[2];
|
||||
|
@ -15731,7 +15757,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
|||
{
|
||||
if (src0->grad) {
|
||||
assert(src1->type == GGML_TYPE_I32);
|
||||
assert(ggml_nelements(src1) == 4);
|
||||
assert(ggml_nelements(src1) == 3);
|
||||
const int n_past = ((int32_t *) src1->data)[0];
|
||||
const int n_dims = ((int32_t *) src1->data)[1];
|
||||
const int mode = ((int32_t *) src1->data)[2];
|
||||
|
|
11
ggml.h
11
ggml.h
|
@ -1121,6 +1121,17 @@ extern "C" {
|
|||
int mode,
|
||||
int n_ctx);
|
||||
|
||||
// custom RoPE, in-place, returns view(a)
|
||||
GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int n_past,
|
||||
int n_dims,
|
||||
int mode,
|
||||
float freq_base,
|
||||
float freq_scale,
|
||||
int n_ctx);
|
||||
|
||||
// rotary position embedding backward, i.e compute dx from dy
|
||||
// a - dy
|
||||
GGML_API struct ggml_tensor * ggml_rope_back(
|
||||
|
|
84
llama.cpp
84
llama.cpp
|
@ -101,14 +101,15 @@ static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph *
|
|||
// memory sizes
|
||||
//
|
||||
|
||||
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0()
|
||||
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0(int n_ctx)
|
||||
{
|
||||
static std::map<e_model, size_t> k_sizes = {
|
||||
{ MODEL_3B, 256ull * MB },
|
||||
{ MODEL_7B, 512ull * MB },
|
||||
{ MODEL_13B, 512ull * MB },
|
||||
{ MODEL_30B, 512ull * MB },
|
||||
{ MODEL_65B, 1024ull * MB },
|
||||
/* empirical scaling, still a guess */
|
||||
{ MODEL_3B, ((size_t) n_ctx / 16ull + 128ull) * MB },
|
||||
{ MODEL_7B, ((size_t) n_ctx / 16ull + 256ull) * MB },
|
||||
{ MODEL_13B, ((size_t) n_ctx / 12ull + 256ull) * MB },
|
||||
{ MODEL_30B, ((size_t) n_ctx / 10ull + 256ull) * MB },
|
||||
{ MODEL_65B, ((size_t) n_ctx / 8ull + 512ull) * MB },
|
||||
};
|
||||
return k_sizes;
|
||||
}
|
||||
|
@ -140,14 +141,14 @@ static const std::map<e_model, size_t> & MEM_REQ_KV_SELF()
|
|||
|
||||
// this is mostly needed for temporary mul_mat buffers to dequantize the data
|
||||
// not actually needed if BLAS is disabled
|
||||
static const std::map<e_model, size_t> & MEM_REQ_EVAL()
|
||||
static const std::map<e_model, size_t> & MEM_REQ_EVAL(int n_ctx)
|
||||
{
|
||||
static std::map<e_model, size_t> k_sizes = {
|
||||
{ MODEL_3B, 512ull * MB },
|
||||
{ MODEL_7B, 768ull * MB },
|
||||
{ MODEL_13B, 1024ull * MB },
|
||||
{ MODEL_30B, 1280ull * MB },
|
||||
{ MODEL_65B, 1536ull * MB },
|
||||
{ MODEL_3B, ((size_t) n_ctx / 256ull + 512ull) * MB },
|
||||
{ MODEL_7B, ((size_t) n_ctx / 256ull + 768ull) * MB },
|
||||
{ MODEL_13B, ((size_t) n_ctx / 256ull + 1024ull) * MB },
|
||||
{ MODEL_30B, ((size_t) n_ctx / 256ull + 1280ull) * MB },
|
||||
{ MODEL_65B, ((size_t) n_ctx / 256ull + 1536ull) * MB },
|
||||
};
|
||||
return k_sizes;
|
||||
}
|
||||
|
@ -189,6 +190,10 @@ struct llama_hparams {
|
|||
uint32_t n_head = 32;
|
||||
uint32_t n_layer = 32;
|
||||
uint32_t n_rot = 64;
|
||||
|
||||
float rope_freq_base = 10000.0f;
|
||||
float rope_freq_scale = 1.0f;
|
||||
|
||||
enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
|
||||
|
||||
bool operator!=(const llama_hparams & other) const {
|
||||
|
@ -647,7 +652,7 @@ struct llama_model_loader {
|
|||
*ctx_size_p = *mmapped_size_p = 0;
|
||||
for (const llama_load_tensor & lt : tensors_map.tensors) {
|
||||
*ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
|
||||
*(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size;
|
||||
*(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size + 16;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -843,6 +848,8 @@ struct llama_context_params llama_context_default_params() {
|
|||
/*.gpu_layers =*/ 0,
|
||||
/*.main_gpu =*/ 0,
|
||||
/*.tensor_split =*/ {0},
|
||||
/*.rope_freq_base =*/ 10000.0f,
|
||||
/*.rope_freq_scale =*/ 1.0f,
|
||||
/*.progress_callback =*/ nullptr,
|
||||
/*.progress_callback_user_data =*/ nullptr,
|
||||
/*.low_vram =*/ false,
|
||||
|
@ -966,6 +973,8 @@ static void llama_model_load_internal(
|
|||
int n_gpu_layers,
|
||||
int main_gpu,
|
||||
const float * tensor_split,
|
||||
float rope_freq_base,
|
||||
float rope_freq_scale,
|
||||
bool low_vram,
|
||||
ggml_type memory_type,
|
||||
bool use_mmap,
|
||||
|
@ -1000,22 +1009,27 @@ static void llama_model_load_internal(
|
|||
}
|
||||
|
||||
hparams.n_ctx = n_ctx;
|
||||
|
||||
hparams.rope_freq_base = rope_freq_base;
|
||||
hparams.rope_freq_scale = rope_freq_scale;
|
||||
}
|
||||
|
||||
const uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
|
||||
|
||||
{
|
||||
fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version));
|
||||
fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab);
|
||||
fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx);
|
||||
fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd);
|
||||
fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult);
|
||||
fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
|
||||
fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
|
||||
fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot);
|
||||
fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version));
|
||||
fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab);
|
||||
fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx);
|
||||
fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd);
|
||||
fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult);
|
||||
fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
|
||||
fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
|
||||
fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot);
|
||||
fprintf(stderr, "%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base);
|
||||
fprintf(stderr, "%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale);
|
||||
fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
|
||||
fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
|
||||
fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
|
||||
fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
|
||||
fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
|
||||
}
|
||||
|
||||
if (file_version < LLAMA_FILE_VERSION_GGJT_V2) {
|
||||
|
@ -1164,9 +1178,9 @@ static void llama_model_load_internal(
|
|||
const size_t mem_required =
|
||||
ctx_size +
|
||||
mmapped_size - vram_weights + // weights in VRAM not in memory
|
||||
MEM_REQ_SCRATCH0().at(model.type) +
|
||||
MEM_REQ_SCRATCH0(hparams.n_ctx).at(model.type) +
|
||||
MEM_REQ_SCRATCH1().at(model.type) +
|
||||
MEM_REQ_EVAL().at (model.type);
|
||||
MEM_REQ_EVAL(hparams.n_ctx).at(model.type);
|
||||
|
||||
// this is the memory required by one llama_state
|
||||
const size_t mem_required_state =
|
||||
|
@ -1270,6 +1284,8 @@ static bool llama_model_load(
|
|||
int n_gpu_layers,
|
||||
int main_gpu,
|
||||
float * tensor_split,
|
||||
float rope_freq_base,
|
||||
float rope_freq_scale,
|
||||
bool low_vram,
|
||||
ggml_type memory_type,
|
||||
bool use_mmap,
|
||||
|
@ -1278,7 +1294,7 @@ static bool llama_model_load(
|
|||
llama_progress_callback progress_callback,
|
||||
void *progress_callback_user_data) {
|
||||
try {
|
||||
llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, low_vram, memory_type,
|
||||
llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, rope_freq_base, rope_freq_scale, low_vram, memory_type,
|
||||
use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
|
||||
return true;
|
||||
} catch (const std::exception & err) {
|
||||
|
@ -1330,6 +1346,9 @@ static bool llama_eval_internal(
|
|||
const int n_rot = hparams.n_embd/hparams.n_head;
|
||||
const int n_gpu_layers = model.n_gpu_layers;
|
||||
|
||||
const float freq_base = hparams.rope_freq_base;
|
||||
const float freq_scale = hparams.rope_freq_scale;
|
||||
|
||||
auto & mem_per_token = lctx.mem_per_token;
|
||||
auto & buf_compute = lctx.buf_compute;
|
||||
|
||||
|
@ -1427,11 +1446,11 @@ static bool llama_eval_internal(
|
|||
offload_func_kq(tmpq);
|
||||
ggml_set_name(tmpq, "tmpq");
|
||||
|
||||
struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0, 0);
|
||||
struct ggml_tensor * Kcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0, freq_base, freq_scale, 0);
|
||||
offload_func_kq(Kcur);
|
||||
ggml_set_name(Kcur, "Kcur");
|
||||
|
||||
struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0, 0);
|
||||
struct ggml_tensor * Qcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0, freq_base, freq_scale, 0);
|
||||
offload_func_kq(Qcur);
|
||||
ggml_set_name(Qcur, "Qcur");
|
||||
|
||||
|
@ -2674,8 +2693,9 @@ struct llama_model * llama_load_model_from_file(
|
|||
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
||||
|
||||
if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gpu_layers,
|
||||
params.main_gpu, params.tensor_split, params.low_vram, memory_type, params.use_mmap, params.use_mlock,
|
||||
params.vocab_only, params.progress_callback, params.progress_callback_user_data)) {
|
||||
params.main_gpu, params.tensor_split, params.rope_freq_base, params.rope_freq_scale,params.low_vram,
|
||||
memory_type, params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback,
|
||||
params.progress_callback_user_data)) {
|
||||
delete model;
|
||||
fprintf(stderr, "%s: failed to load model\n", __func__);
|
||||
return nullptr;
|
||||
|
@ -2750,9 +2770,9 @@ struct llama_context * llama_new_context_with_model(
|
|||
ctx->embedding.resize(hparams.n_embd);
|
||||
}
|
||||
|
||||
ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type));
|
||||
ctx->buf_compute.resize(MEM_REQ_EVAL(hparams.n_ctx).at(ctx->model.type));
|
||||
|
||||
ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0().at(ctx->model.type));
|
||||
ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type));
|
||||
ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
|
||||
}
|
||||
|
||||
|
|
5
llama.h
5
llama.h
|
@ -89,6 +89,11 @@ extern "C" {
|
|||
int32_t n_gpu_layers; // number of layers to store in VRAM
|
||||
int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple GPUs
|
||||
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
|
||||
float rope_freq_base; // RoPE base frequency
|
||||
float rope_freq_scale; // RoPE frequency scaling factor
|
||||
|
||||
// called with a progress value between 0 and 1, pass NULL to disable
|
||||
llama_progress_callback progress_callback;
|
||||
// context pointer passed to the progress callback
|
||||
|
|
Loading…
Reference in a new issue