llama.cpp/examples/embedding/embedding.cpp
Evan Miller 5656d10599
mpi : add support for distributed inference via MPI (#2099)
* MPI support, first cut

* fix warnings, update README

* fixes

* wrap includes

* PR comments

* Update CMakeLists.txt

* Add GH workflow, fix test

* Add info to README

* mpi : trying to move more MPI stuff into ggml-mpi (WIP) (#2099)

* mpi : add names for layer inputs + prep ggml_mpi_graph_compute()

* mpi : move all MPI logic into ggml-mpi

Not tested yet

* mpi : various fixes - communication now works but results are wrong

* mpi : fix output tensor after MPI compute (still not working)

* mpi : fix inference

* mpi : minor

* Add OpenMPI to GH action

* [mpi] continue-on-error: true

* mpi : fix after master merge

* [mpi] Link MPI C++ libraries to fix OpenMPI

* tests : fix new llama_backend API

* [mpi] use MPI_INT32_T

* mpi : factor out recv / send in functions and reuse

* mpi : extend API to allow usage with outer backends (e.g. Metal)

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-10 18:49:56 +03:00

99 lines
2.7 KiB
C++

#include "common.h"
#include "llama.h"
#include "build-info.h"
#include <ctime>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
int main(int argc, char ** argv) {
gpt_params params;
if (gpt_params_parse(argc, argv, params) == false) {
return 1;
}
params.embedding = true;
if (params.n_ctx > 2048) {
fprintf(stderr, "%s: warning: model might not support context sizes greater than 2048 tokens (%d specified);"
"expect poor results\n", __func__, params.n_ctx);
}
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = gpt_random_prompt(rng);
}
llama_backend_init(params.numa);
llama_model * model;
llama_context * ctx;
// load the model
std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (model == NULL) {
fprintf(stderr, "%s: error: unable to load model\n", __func__);
return 1;
}
// print system information
{
fprintf(stderr, "\n");
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
}
int n_past = 0;
// Add a space in front of the first character to match OG llama tokenizer behavior
params.prompt.insert(0, 1, ' ');
// tokenize the prompt
auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
if (params.verbose_prompt) {
fprintf(stderr, "\n");
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
for (int i = 0; i < (int) embd_inp.size(); i++) {
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
}
fprintf(stderr, "\n");
}
if (params.embedding){
if (embd_inp.size() > 0) {
if (llama_eval(ctx, embd_inp.data(), embd_inp.size(), n_past, params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
}
const int n_embd = llama_n_embd(ctx);
const auto embeddings = llama_get_embeddings(ctx);
for (int i = 0; i < n_embd; i++) {
printf("%f ", embeddings[i]);
}
printf("\n");
}
llama_print_timings(ctx);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
return 0;
}